

Chettinad

College of Engineering \& Technology
Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

Department of Computer Science and Engineering CS8491-COMPUTER ARCHITECTURE
 Unit II - MCQ Bank

1. The final addition sum of the numbers, $0110 \& 0110$ is \qquad
A. 1101
B. 1111
C. 1001
D. 1010

ANSWER: (A).
2. The product of $1101 \& 1011$ is \qquad
A. 10001111
B. 10101010
C. 11110000
D. 11001100

ANSWER: (A).
3. We make use of \qquad circuits to implement multiplication.
A. Flip flops
B. Combinatorial
C. Fast adders
D. None of the mentioned

ANSWER: (C).
4. The bits $1 \& 1$ are recorded as \qquad in bit-pair recording.
A. -1
B. 0
C. +1
D. both -1 and 0

ANSWER: (D).
5. The multiplier -6(11010) is recorded as \qquad
A. 0-1-2
B. $0-1+1-10$
C. $-2-10$
D. None of the mentioned

ANSWER: (A).
6. The decimal numbers represented in the computer are called as floating point numbers, as the decimal point floats through the number.
A. True
B. False

ANSWER: (A).
7. If the decimal point is placed to the right of the first significant digit, then the number is called
A. Orthogonal
B. Normalized
C. Determinate
D. None of the mentioned

ANSWER: (B).
8. \qquad constitute the representation of the floating number.
A. Sign
B. Significant digits
C. Scale factor
D. All of the mentioned

ANSWER: (D).
9. The sign followed by the string of digits is called as \qquad
A. Significant
B. Determinant
C. Mantissa
D. Exponent

ANSWER: (C).
10. In IEEE 32-bit representations, the mantissa of the fraction is said to occupy \qquad bits.
A. 24
B. 23
C. 20
D. 16

ANSWER: (B).
11. The normalized representation of $0.0010110 * 2{ }_{9}$ is \qquad
A. 0100010000010110
B. 0100001010110
C. 0101010101110
D. 01111010011100

ANSWER: (B).
12. The 32 bit representation of the decimal number is called as \qquad
A. Double-precision
B. Single-precision
C. Extended format
D. None of the mentioned

ANSWER: (B).
13. In 32 bit representation the scale factor as a range of \qquad
A. - $\mathbf{1 2 8}$ to $\mathbf{1 2 7}$
B. -256 to 255
C. 0 to 255
D. None of the mentioned

ANSWER: (A).
14. In double precision format, the size of the mantissa is \qquad
A. 32 bit
B. 52 bit
C. 64 bit
D. 72 bit

ANSWER: (B).
15. The result of \gg of 11001 by 3-bits will be \qquad
A. 01000
B. 01111
C. 00011
D. 11111

ANSWER: (A).
16. If Booth's Multiplication is performed on the numbers $22 * 3$, then what is 3 referred to as
A. accumulator
B. multiplicand
C. quotient

D. multiplier

ANSWER: (D).
17. If the two numbers are to be multiplied, the mantissa are multiplied and the exponents are added.
A. True
B. False
ANSWER: (A).
18. \qquad constitute the representation of the floating number.
A. Sign
B. Significant digits
C. Scale factor
D. All of the mentioned

ANSWER: (D).
19. If $(101.01)_{2}=(x)_{10}$, then what is the value of x ?
A. 505.05
B. 10.101
C. 101.01
D. 5.25

ANSWER: (D).
20. On addition of 28 and 18 using 2 's complement, we get \qquad
A. 00101110
B. 0101110
C. 00101111
D. 1001111

ANSWER: (B).
21. On subtracting +28 from +29 using 2 's complement, we get \qquad
A. 11111010
B. 111111001
C. 100001
D. 1

ANSWER: (D).
22. What is the addition of the binary numbers 11011011010 and 010100101 ?
A. 0111001000
B. 1100110110
C. 11101111111
D. 10011010011

ANSWER: (C).
23. Perform binary subtraction: $101111-010101=$?
A. 100100
B. 010101
C. 011010
D. 011001

ANSWER: (C).
24. On multiplication of (10.10) and (01.01), we get
A. 101.0010
B. 0010.101
C. 011.0010
D. 110.0011

ANSWER: (C).
25. What will be the value obtained after multiplication of $(-2) *(-3)$ using Booth's Algorithm?
A. 6
B. -6
C. -2
D. -3

ANSWER: (A).

